Our primary scientific interest lies at the interface between ecology and pathogenesis. We investigate how environmental factors affect the pathogenic potential of marine bacteria, which genetic traits are prerequisites in colonizing a new niche such as the human host, how they acquire and regulate virulence genes, and what are their ecological relationships with other members of their natural environment and the host’s microbiota.

We study members of the family Vibrionaceae, a highly diverse group of marine bacteria that includes from symbionts to human pathogens. Some of the species we work with include Vibrio cholerae, the etiological agent of the severe diarrheal disease cholera, Vibrio vulnificus, an emergent pathogen that causes a deadly septicemia, and Vibrio coralliilyticus, a coral pathogen whose emergence is linked to climate change.

Our research approach strives to be holistic and multidisciplinary; what we call “From Bays to Bases”. It encompasses a mix of molecular biology, genomics, phylogenetics, pathogenesis, and ecology. We believe that by understanding pathogen evolution and ecology we will ultimately gain the knowledge that will allow us to forecast the traits of emergent virulent strains, predict the sources of outbreaks, and to design and produce affordable and safe vaccines and reliable treatments against bacterial threats.

Learn more about my lab

Recent Publications

  1. M. Lopez-Perez, J. M. Jayakumar, J. M. Haro-Moreno, A. Zaragoza-Salas, G. Reddi, F. Rodriguez-Valera, O. H. Shapiro, M. Alam, S. Almagro-Moreno*. Evolutionary model of cluster divergence of the emergent marine pathogen Vibrio vulnificus: From genotype to ecotype. mBio.2019
  2. G. Reddi, K. Pruss, K. Cottingham, R. K. Taylor, and S. Almagro-Moreno*.Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirsPLoS One.2018.
  3. N. Sakib, G. Reddi, and S.Almagro-Moreno*. Environmental role of pathogenic traits in Vibrio cholerae. Journal of Bacteriology. 2018
  4. Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS
    R. Midgett, S. Almagro-Moreno, M. Pellegrini, R. K. Taylor, K. Skorupski, F. J. Kull. Molecular Microbiology. 2017
  5. Origins of pandemic clones from environmental gene pools
    J. Shapiro, I. Levade, G. Kovacikova, R. K. Taylor, S. Almagro-Moreno*. Nature Microbiology. 2016
  6. Intestinal colonization dynamics of Vibrio cholerae
    Almagro-Moreno*, K. Pruss, and R. K. Taylor. PLoS Pathogens. 2015
  7. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state
    Almagro-Moreno*, T. K. Kim, K. Skorupski, and R. K. Taylor. PLoS Genetics. 2015
  8. Role of ToxS in the proteolytic cascade of virulence regulator ToxR in Vibrio cholerae
    Almagro-Moreno*, M. Z. Root, and R. K. Taylor. Molecular Microbiology. 2015
  9. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo
    B Lubin, W. G. Lewis, N. M. Gilbert, S. Almagro-Moreno, E. F. Boyd, A. L. Lewis. Infection and Immunity. 2015
  10. Cholera: Environmental reservoirs and impact on disease transmission
    Almagro-Moreno and R. K. Taylor. Microbiology Spectrum. 2013
  11. Cholera: Environmental reservoirs and impact on disease transmission
    Almagro-Moreno and R. K. Taylor. Book chapter for “OneHealth: People, Animals, and Environment”. ASM press. 2013
  12. Ecology and genetic structure of a northern temperate Vibrio cholerae population related to toxigenic isolates
    M. Schuster, A. L. Tyzik, R. A. Donner, M. J. Striplin, S. Almagro-Moreno, S. H. Jones, V. S. Cooper, and C. A. Whistler. Applied Environmental Microbiology. 2011
  13. An atomic force microscopy method for the detection of binding forces between bacteria and a lipid bilayer containing higher order gangliosides
    L. Adams, S. Almagro-Moreno and E. F. Boyd. Journal of Microbiological Methods. 2010
  14. Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains
    Almagro-Moreno, M. G. Napolitano and E. F. Boyd. Infection, Genetics and Evolution. 2010
  15. Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA
    Almagro-Moreno, M. G. Napolitano and E. F. Boyd. BMC Microbiology. 2010
  16. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut
    Almagro-Moreno and E. F. Boyd. Gut Microbes. 2010
  17. . How genomics has shaped our understanding of the evolution and emergence of pathogenic Vibrio cholerae
    S. Almagro-Moreno, R. Murphy, and E. F. Boyd. Book chapter for “Genomics of Foodborne and Waterborne Pathogens“. ASM press, 2010
  18. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine
    Almagro-Moreno and E. F. Boyd. Infection and Immunity. 2009
  19. Insights into the evolution of sialic acid catabolism among bacteria
    Almagro-Moreno and E. F. Boyd. BMC Evolutionary Biology. 2009
  20. Genomic islands are dynamic, ancient integrative elements in bacterial evolution
    F. Boyd, S. Almagro-Moreno and M. A. Parent. Trends in Microbiology. 2009
  21. The genomic code: inferring Vibrionaceae niche specialization
    J. Reen, S. Almagro-Moreno, D. Ussery and E. F. Boyd. Nature Reviews Microbiology.2006

*Corresponding author