Biography
Our primary scientific interest lies at the interface between ecology and pathogenesis. We investigate how environmental factors affect the pathogenic potential of marine bacteria, which genetic traits are prerequisites in colonizing a new niche such as the human host, how they acquire and regulate virulence genes, and what are their ecological relationships with other members of their natural environment and the host’s microbiota.
We study members of the family Vibrionaceae, a highly diverse group of marine bacteria that includes from symbionts to human pathogens. Some of the species we work with include Vibrio cholerae, the etiological agent of the severe diarrheal disease cholera, Vibrio vulnificus, an emergent pathogen that causes a deadly septicemia, and Vibrio coralliilyticus, a coral pathogen whose emergence is linked to climate change.
Our research approach strives to be holistic and multidisciplinary; what we call “From Bays to Bases”. It encompasses a mix of molecular biology, genomics, phylogenetics, pathogenesis, and ecology. We believe that by understanding pathogen evolution and ecology we will ultimately gain the knowledge that will allow us to forecast the traits of emergent virulent strains, predict the sources of outbreaks, and to design and produce affordable and safe vaccines and reliable treatments against bacterial threats.
Learn more about my lab at: www.vibriocholerae.org
Recent Publications
- M. Lopez-Perez, J. M. Jayakumar, J. M. Haro-Moreno, A. Zaragoza-Salas, G. Reddi, F. Rodriguez-Valera, O. H. Shapiro, M. Alam, S. Almagro-Moreno*. Evolutionary model of cluster divergence of the emergent marine pathogen Vibrio vulnificus: From genotype to ecotype. mBio.2019
- G. Reddi, K. Pruss, K. Cottingham, R. K. Taylor, and S. Almagro-Moreno*.Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS One.2018.
- N. Sakib, G. Reddi, and S.Almagro-Moreno*. Environmental role of pathogenic traits in Vibrio cholerae. Journal of Bacteriology. 2018
- Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS
R. Midgett, S. Almagro-Moreno, M. Pellegrini, R. K. Taylor, K. Skorupski, F. J. Kull. Molecular Microbiology. 2017 - Origins of pandemic clones from environmental gene pools
J. Shapiro, I. Levade, G. Kovacikova, R. K. Taylor, S. Almagro-Moreno*. Nature Microbiology. 2016 - Intestinal colonization dynamics of Vibrio cholerae
Almagro-Moreno*, K. Pruss, and R. K. Taylor. PLoS Pathogens. 2015 - Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state
Almagro-Moreno*, T. K. Kim, K. Skorupski, and R. K. Taylor. PLoS Genetics. 2015 - Role of ToxS in the proteolytic cascade of virulence regulator ToxR in Vibrio cholerae
Almagro-Moreno*, M. Z. Root, and R. K. Taylor. Molecular Microbiology. 2015 - Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo
B Lubin, W. G. Lewis, N. M. Gilbert, S. Almagro-Moreno, E. F. Boyd, A. L. Lewis. Infection and Immunity. 2015 - Cholera: Environmental reservoirs and impact on disease transmission
Almagro-Moreno and R. K. Taylor. Microbiology Spectrum. 2013 - Cholera: Environmental reservoirs and impact on disease transmission
Almagro-Moreno and R. K. Taylor. Book chapter for “OneHealth: People, Animals, and Environment”. ASM press. 2013 - Ecology and genetic structure of a northern temperate Vibrio cholerae population related to toxigenic isolates
M. Schuster, A. L. Tyzik, R. A. Donner, M. J. Striplin, S. Almagro-Moreno, S. H. Jones, V. S. Cooper, and C. A. Whistler. Applied Environmental Microbiology. 2011 - An atomic force microscopy method for the detection of binding forces between bacteria and a lipid bilayer containing higher order gangliosides
L. Adams, S. Almagro-Moreno and E. F. Boyd. Journal of Microbiological Methods. 2010 - Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains
Almagro-Moreno, M. G. Napolitano and E. F. Boyd. Infection, Genetics and Evolution. 2010 - Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA
Almagro-Moreno, M. G. Napolitano and E. F. Boyd. BMC Microbiology. 2010 - Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut
Almagro-Moreno and E. F. Boyd. Gut Microbes. 2010 - . How genomics has shaped our understanding of the evolution and emergence of pathogenic Vibrio cholerae
S. Almagro-Moreno, R. Murphy, and E. F. Boyd. Book chapter for “Genomics of Foodborne and Waterborne Pathogens“. ASM press, 2010 - Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine
Almagro-Moreno and E. F. Boyd. Infection and Immunity. 2009 - Insights into the evolution of sialic acid catabolism among bacteria
Almagro-Moreno and E. F. Boyd. BMC Evolutionary Biology. 2009 - Genomic islands are dynamic, ancient integrative elements in bacterial evolution
F. Boyd, S. Almagro-Moreno and M. A. Parent. Trends in Microbiology. 2009 - The genomic code: inferring Vibrionaceae niche specialization
J. Reen, S. Almagro-Moreno, D. Ussery and E. F. Boyd. Nature Reviews Microbiology.2006
*Corresponding author