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Abstract

Dozens of computational methods are developed to identify species present in a metage-

nomic dataset. Many of these computational methods depend on available sequenced micro-

bial species, which are still far from being representative. To see how newly sequenced

genomes affect the analysis results, we re-analyzed a shotgun metagenomic dataset com-

posed of twelve colitis free metagenomic samples and ten colitis-related metagenomic sam-

ples. Unexpectedly, we identified at least two new phyla that may relate to colitis development

in patients, together with the phylum identified previously. Compared with the previously iden-

tified phylum that differed between the two types of samples, the differences associated with

the two new phyla are statistically more significant. Moreover, the abundance of the two new

phyla correlates more with the severity of colitis. Surprisingly, even by repeating the analyses

implemented in the previous study, we found that at least one main conclusion in the previous

study is not supported. Our study indicates the importance of re-analysis of the generated

metagenomic datasets and the necessity of considering multiple updated tools in metage-

nomic studies. It also sheds light on the limitations of the popular tools used currently and the

importance to infer the presence of taxa without relying upon available sequenced genomes.

Introduction

A plethora of metagenomic datasets have been generated in the past fifteen years [1–4]. Early

datasets are often based on 16S rRNA profiling and Sanger sequencing [5–7]. Later datasets

are usually sequenced by next generation sequencing technologies [8, 9]. The generated data-

sets vary from the early ones such as those in seawater [2], acid mine drainage [10], and deep

sea [11, 12] to current ones such as those in gut [8, 13], skin [14], soil [15], etc. These metage-

nomic datasets have enabled an unprecedented exploration of microbes, which has signifi-

cantly advanced our understanding of microbes in the living world [3, 4, 8].

Correspondingly, dozens of computational methods are developed for the analyses of meta-

genomic datasets. These include methods for filtering erroneous and duplicated reads, meth-

ods for gene prediction directly from metagenomic reads, similarity-based and abundance-

based methods for read binning, methods for contig binning and genome assembly, etc. [16–

30]. These methods altogether have significantly advanced our understanding of the genetic

contents in various metagenomic datasets [31–33].
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The majority of available computational methods that perform on metagenomic datasets

somewhat rely upon available sequenced genomes. For instance, most methods predict species

present in metagenomic datasets depend on the annotation of the available sequenced gen-

omes, such as Megan and MetaPhlAn [16, 17]. Megan is an early method that infers species

presence based on the comparison of shotgun metagenomic reads with annotated sequences

[16]. MetaPhlAn is a popular method for inferring species present in a metagenomic dataset

with marker genes, which infers marker genes from sequenced genomes [17]. It is understand-

able that most methods are based on annotated genomes, as more information is taken into

account in the analyses and thus more reliable conclusions may be made. Moreover, although

metagenomic reads can be studied and analyzed without sequenced genomes, such as read

binning and gene prediction, the automatic inference of the origin of a sequence and the pres-

ence of a species without any prior information is still infeasible.

Dubin et al. generated a metagenomic dataset to study colitis development in metastatic

melanoma patients followed by CTLA4-blockage [34]. In their study, shotgun metagenomic

reads are sequenced from faecal samples of each of twelve colitis-free (CF) patients and each of

ten progressed to colitis (PtC) patients, together with 16S rRNA reads sequenced from faecal

samples of each of 34 patients. These 22 patients from whom the shotgun metagenomic reads

came are included in the 34 patients used for 16S rRNA sequencing. This study pointed out

that taxonomical analysis results based on 16S rRNA reads from the 34 samples were similar to

those based on shotgun metagenomic reads from the 22 samples by the popular method

MetaPhlAn [34]. In brief, the phylum Bacteroidetes and its three families, Bacteroidaceae, Rike-
nellaceae, and Barnesiellaceae, were identified to be significantly enriched in CF samples com-

pared with PtC samples (Mann-Whitney test p-value 0.013 for Bacteroidetes, p-value 0.007,

0.023 and 0.013 for the three families, respectively). For simplicity’s sake, we used “between

samples” to refer to “between CF samples and PtC samples” in the following. Moreover, the

abundance of reads from Bacteroidetes and its three families negatively correlates with the

severity of colitis, with the Spearman’s rank correlation coefficient around -0.38, -0.43, -0.42

and -0.43, respectively.

Since this original study was published two years ago [34], genomes of more microbes have

been sequenced. Moreover, MetaPhlAn, the tool used in this study, is based on marker genes,

which cannot fully utilize the information buried in metagenomic reads [17]. We thus re-ana-

lyzed all shotgun metagenomic reads generated from the 22 patient samples in this metage-

nomic dataset by mapping reads to all sequenced microbial genomes instead of considering

only reads from marker genes (Methods). We considered shotgun metagenomic reads only, as

they are more unbiased for taxonomical analysis than 16S rRNA reads [35, 36]. Unexpectedly,

we found that reads from Bacteroidetes are only marginally more in CF samples than in PtC

samples. Moreover, significantly more reads from at least two new phyla, Thaumarchaeota and

Actinobacteria, are in PtC samples than in CF samples. The abundance of reads from these two

new phyla correlates with the severity of colitis much better than that from Bacteroidetes. By fur-

ther studying low level taxa based on different strategies, we found that the read abundances of

at least 2 classes, 9 orders, 22 families, 70 genera, and 162 species are significantly different

between the two types of samples, and correlate with the severity of colitis in patients better

than that of Bacteroidetes. Surprisingly, by repeating the analysis performed in the original

study on this dataset with both old and current versions of MetaPhlAn [34], we found that the

previously identified phylum Bacteroidetes is not significantly different between samples while

one of the newly identified phyla, Actinobacteria, is identified as the only significant phylum

between the samples. Our study demonstrated the necessity to reanalyze the generated metage-

nomic data, the limitation of the marker gene based methods, and the importance of being cau-

tious about the inference from available sequenced genomes in metagenomic studies.

Old metagenomic data and new sequenced genomes
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Results

At least two new phyla may relate to colitis development in patients

We mapped shotgun metagenomic reads from each of the 22 faecal samples to about 15,000

sequenced microbial genomes and compared the relative abundance of reads from every phy-

lum in CF samples with that in PtC samples (Fig 1 and Methods). We discovered that the

abundance of reads from seven phyla are significantly different between CF samples and PtC

samples (Mann-Whitney p-value < = 0.05), including Bacteroidetes identified previously [34].

Five phyla were identified when only uniquely mapped reads were considered. A different set

of five phyla were identified when both unique and multi-mapped reads were considered (Fig

2A). Multi-mapped reads are reads that can be mapped to multiple sequenced microbial

genomes. For convenience, we call multi-mapped reads and uniquely mapped reads multi-

reads and unique reads, respectively.

With unique reads, we identified five phyla that are significantly different between samples.

They are Thaumarchaeota (p-value = 0.009), Actinobacteria (p-value = 0.011), Dictyoglomi

Fig 1. Pipelines to analyze shotgun metagenomic reads. The left panel shows our pipeline. Centrifuge outputs the reads mapped to the

sequenced genomes, from which the read abundances of taxa, Mann-Whitney p-values, and correlations with colitis severity are

calculated. The middle panel shows the analyses with MetaPhlAn by a different read trimming procedure from that in the original study.

The right panel shows the pipeline using MetaPhlAn in the original study. As it is not clear which MetaPhlAn version was used in the

original study, two versions of MetaPhlAn have been used for comparisons in this study.

https://doi.org/10.1371/journal.pone.0198773.g001

Old metagenomic data and new sequenced genomes
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(p-value = 0.043), Elusimicrobia (p-value = 0.043), and Bacteroidetes (p-value = 0.050) (Fig

2A). Although Bacteroidetes discovered in the original study is identified, it has the largest

Mann-Whitney test p-value, suggesting that the four new phyla are even more significant and

may be more related to colitis development. In fact, Bacteroidetes has a negative correlation of

-0.335 with the severity of colitis, while Thaumarchaeota, Actinobacteria, Elusimicrobia, and

Dictyoglomi have a similar or higher positive correlation of 0.504, 0.480, 0.358, and 0.322,

respectively (Fig 2B).

We also studied significant phyla with all mapped reads (i.e., unique reads and multi-reads)

(Methods). We identified the following five phyla that are significantly different between samples:

Thaumarchaeota (p-value = 0.014), Actinobacteria (p-value = 0.021), Chlamydiae (p-value

= 0.043), Calditrichaeota (p-value = 0.050), and Bacteroidetes (p-value = 0.050) (Fig 2A). Bacteroi-
detes again is not as significant as three of the other four new phyla. The four new phyla also have

a higher positive correlation with the colitis severity than Bacteroidetes. The correlations of the

read abundances with the severity of colitis for Thaumarchaeota, Actinobacteria, Chlamydiae, Cal-
ditrichaeota, and Bacteroidetes are 0.426, 0.484, 0.391, 0.426, and -0.335, respectively. Three phyla

(Thaumarchaeota, Actinobacteria, and Bacteroidetes) are identified with unique reads only and

with all mapped reads as well, suggesting that at least three phyla may relate to colitis development

Fig 2. Significant phyla from unique reads only and all mapped reads, respectively. A. Seven significant phyla identified. The two numbers below a phylum name

are the Mann-Whitney p-values, the Spearman’s correlations of the read abundances with the colitis severity. The next row provides the average number of reads

mapped to each of the 22 samples and the percentage of unique reads among all mapped reads for the phylum. The third row below a phylum name gives the

references that may support the colitis-relatedness of this phylum and its lower taxa. B. The Spearman’s correlation for seven phyla. C-E: the scatter plot of the relative

read abundances in Bacteroidetes, Actinobacteria, and Thaumarchaeota, respectively.

https://doi.org/10.1371/journal.pone.0198773.g002
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in patients (Fig 2). The p-value of Thaumarchaeota and Actinobacteria is changed with all mapped

reads compared with only unique reads (Fig 2A), indicating the difference of the abundance of

multi-reads relative to unique reads between the two types of samples for these two phyla.

Several aspects are different between Bacteroidetes and the six new phyla. First, there are

many more reads mapped to Bacteroidetes than to other phyla. In each of the 22 samples, Bac-
teroidetes on average has 151,197 mapped reads, while the six new phyla except Actinobacteria
on average have fewer than 320 mapped reads (Fig 2A). Since the original study applied a

marker gene based method to identify significant phyla and it is unlikely that the small number

of sequenced reads from the five new phyla come from marker genes, it is not surprising that it

missed these five low abundance phyla. In terms of Actinobacteria, which has 141,288 mapped

reads on average in each sample, the latest version and the old version of MetaPhlAn indeed

identify this phylum as significant (see the fourth results section). The original study did not

report this phylum, maybe because the 16S rRNA read analysis did not show the significance

of this phylum. Second, PtC samples have more reads from the six new phyla than CF samples,

while it is opposite for Bacteroidetes (Fig 2B). Third, except Dictyoglomi, the abundance of

reads from new phyla have more significant correlations with the severity of colitis than that

from Bacteroidetes (Fig 2B).

In summary, at least three phyla (Bacteroidetes, Actinobacteria, Thaumarchaeota) are highly

likely related to colitis development in patients (Fig 2B–2E). The read abundances of Thau-
marchaeota and Actinobacteria are more different between samples compared with Bacteroi-
detes based on only unique reads and all mapped reads (Fig 2C–2E). Moreover, their

abundances correlate with the severity of colitis better than that of Bacteroidetes (Fig 2B). In

addition, Elusimicrobia and Chlamydiae may be related to colitis development in patients as

well. This is because their properties of read abundances and correlations are similar as the

above three phyla, although they are not identified by both all mapped reads and unique reads

only. It is worth pointing out that there is at least one significant lower level taxon identified by

unique reads from each of these five phyla, as shown in the next section.

Hundreds of lower taxa may relate to colitis development in patients

We further compared read abundances from lower taxa between samples (Methods). If we

consider only unique reads, there are 3 classes, 14 orders, 34 families, 101 genera and 244 spe-

cies with read abundances different between samples (p-value< = 0.05) (S1 Table). If we con-

sider all mapped reads, 6 classes, 15 orders, 43 families, 116 genera and 334 species have

different read abundances between samples (p-value< = 0.05) (S2 Table). In total, there are 7

classes, 20 orders, 52 families, 143 genera and 406 species with read abundances different

between samples (Tables 1 and S1 and S2). Note that due to the large number of un-sequenced

genomes, when the read abundances of a taxon is significantly different between samples, the

Table 1. The number of taxa identified based on different criteria.

The

taxon

level

#taxa from

unique reads

#taxa from all

mapped reads

#taxa from unique

or all mapped

reads

#correlated taxa

from unique reads

#correlated taxa

from all mapped

reads

#correlated

taxa from unique or

all mapped reads

#correlated taxa from both

unique reads and all mapped

reads

phylum 5 5 7 4 5 6 3

class 3 6 7 2 6 6 2

order 14 15 20 12 14 17 9

family 34 43 52 28 40 46 22

genus 101 116 143 95 109 134 70

species 244 334 406 221 309 368 162

https://doi.org/10.1371/journal.pone.0198773.t001
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read abundances of neither its ancestral taxa nor its offspring taxa may be significantly differ-

ent between samples.

The aforementioned five phyla that may relate to colitis development (Thaumarchaeota,

Actinobacteria, Elusimicrobia, Bacteroidetes, and Chlamydiae) all have lower taxa that are sig-

nificantly different between samples based on unique reads. Bacteroidetes has four families,

nine genera, and nineteen species with read abundances significantly different between sam-

ples. Two of the four families, Rikenellaceae and Barnesiellaceae, which were reported in the

original study, are significantly different between samples. Although the abundance of reads

from Bacteroidetes itself negatively correlates with the colitis severity, the read abundances

from some of its significant lower level taxa positively correlates with the colitis severity. For

instance, the species Bacteroides caccae has a p-value of 0.006 and a negative correlation of

-0.468, while the species Blattabacterium sp has a p-value of 0.043 and a positive correlation of

0.438. Actinobacteria has eleven species, two genera, one family, one order and one class with

read abundances significantly different between samples. All these lower taxa are all under the

class Actinobacteria, which is the class for high G+C Gram-positive bacteria but is not signifi-

cant itself, implying that certain Gram-positive bacterial species may play an important role in

PtC patients. The two phyla, Thaumarchaeota and Elusimicrobia, each has one significant spe-

cies and at most one significant lower taxon at every lower taxonomical level (Fig 3). For

instance, Elusimicrobia has only one class, one order, one family, one genus, and one species

with read abundances different between samples. The remaining phylum, Chlamydiae, has one

order, one family, two genera and three species with read abundances significantly different

between samples (Fig 3).

In terms of correlation with the severity of colitis in patients, the read abundances of these

significant lower taxa of the above five phyla based on unique reads has higher correlation

than that of Bacteroidetes (S1 Table). Bacteroidetes has three families, eight genera and sixteen

Fig 3. Lower taxa identified from the phyla Thaumarchaeota and Chlamydiae. Only taxa from the last column of Table 1 are shown. Note

that no class from these two phyla are identified in the last column of Table 1. The phylum Chlamydiae is presented in a dotted box, as it is not

identified in the last column of Table 1.

https://doi.org/10.1371/journal.pone.0198773.g003

Old metagenomic data and new sequenced genomes
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species with higher correlations than Bacteroidetes itself. Among the three families, Rikenella-
ceae (p-value 0.021, correlation -0.463) and Barnesiellaceae (p-value 0.025, correlation -0.381)

are also identified in the original study, while the family Dysgonamonadaceae (p-value 0.05,

correlation-0.342) is missed by the original study. Among all lower taxa, four genera and eight

species have positive correlations with the colitis severity, while the remaining eight species,

four genera, and three families have negative correlations. The average of these negative and

positive correlations is -0.390 and 0.459, respectively. Actinobacteria has ten species, two gen-

era, one family, one order and one class with higher correlations with the severity of colitis,

and the average of these correlations is 0.447. Thaumarchaeota has a significant family and a

significant order with an average correlation of 0.478 when we consider only unique reads.

Elusimicrobia has one significant lower taxon with the correlation of 0.402 at each taxonomical

level. Chlamydiae has one order, one family, two genera, and three species with an average of

correlation of 0.414.

When we consider all mapped reads, the five phyla discussed above also have lower taxa

that are significantly different between samples, and their abundance has higher correla-

tions with the severity of colitis than that of Bacteroidetes (S2 Table). Bacteroidetes has three

families, nine genera and seventeen families that are significant and have higher correla-

tions. The average negative correlations of lower taxa is -0.381 and the average of positive

correlations is 0.433. Actinobacteria has one class, one genus and ten species that are signifi-

cant and have an average correlation of 0.456. The same as the lower taxa from unique

reads, ten species are from the same class of Actinobacteria, which is the class for gamma-

positive bacteria and is not significant itself. Another class, Coriobacteriia, is opposite to the

Actinobacteria class, in that the class itself is significantly different between the two groups

and its abundance correlates better with the severity of colitis while this class has no signifi-

cant lower taxon. Elusimicrobia has exactly one lower taxon at each level with the abundance

significantly different between the two groups and correlating better with the severity of

colitis. The average correlation of significant lower taxa is 0.457. Thaumarchaeota has one

class, two orders, two families, one genera and one species that are significant and their

abundance correlate better with the severity of colitis. The average correlation is 0.396. The

class under the Thaumarchaeota phylum, Nitrososphaeria, has exact one taxon at each of its

lower levels. Chlamydiae has one class, one order, two families, two genera and four species

that are significant and have higher correlations with the severity of colitis, and the average

correlation is 0.410. Among them, Chlamydia felis is the species identified with the highest

correlation of 0.587 in this study.

It is also worth pointing out that although we focus on lower taxa under the five phyla,

there are many significant lower taxa not from these five phyla (S1 and S2 Tables). For

instance, there are at least 8 orders, 21 families, 82 genera and 192 species that do not belong to

the five phyla with their abundance significantly different between the two types of samples

and correlate better with the severity of colitis than Bacteroidetes.
A large proportion of the significant lower taxa from unique reads and from all mapped

reads are the same (Tables 1 and S1 and S2). For all significant lower taxa, we have identified 2

(42.86%) classes, 9 (28.57%) orders, 25 (45.00%) families, 74 (51.75%) genera and 172 (42.36%)

species from both unique reads only and from all mapped reads. All five phyla have at least one

shared lower taxon from both unique reads only and from all mapped reads, and the lower taxa

have higher correlations than their parent taxa. Among all these significant lower taxa, the

abundance of 2 (100%) classes, 9 (100%) orders, 22 (88.00%) families, 70 (94.59%) genera, 162

(94.19%) species correlate with the severity of colitis better than that of Bacteroidetes (Table 1,

last column). We believe that these taxa are highly likely colitis-related taxa.

Old metagenomic data and new sequenced genomes
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Many identified taxa may relate to colitis development based on literature

Microbes are known to play a vital role in the development of colitis [37]. We thus studied

whether the above taxa are colitis related based on literature, since their abundance is signifi-

cantly different between samples and correlates better with the severity of colitis than Bacteroi-
detes. Because the number of these taxa is large, we focused on the three most confident phyla

(Bacteroidetes, Actinobacteria, Thaumarchaeota) and their lower taxa. We found that at least 2

(66.7%) of the three phyla and 11 (42.31%) of the identified species in the three phyla are likely

colitis related.

We found that microbes from at least two of the three phyla are showed to be related to coli-

tis [38–40]. Bacteria from Bacteroidetes belong to Gram-negative bacteria [41], which are

known risk factors for inflammatory bowel diseases such as colitis [42–45]. The phylum Acti-
nobacteria belongs to Gram-positive bacteria. Gram-positive commensal bacteria induce coli-

tis by recruiting colitogenic monocytes and macrophages [46]. Actinobacteria was found

increasingly in abundance in colitis groups compared with control non-colitis groups in differ-

ent experiments as well [47–50].

There are also four and seven lower taxa that may relate to colitis in the phyla Bacteroidetes
and Actinobacteria, respectively. In term of Bacteroidetes, Ye et al. analyzed faecal samples col-

lected from patients with colitis and found that the abundance of Barnesiella viscericola corre-

lates with the disease activity in IL-10-/- mice [39]. Barnesiella viscericola are found by unique

reads with the Mann-Whitney p-value of 0.025 and its abundance has a correlation coefficient

of -0.381 with the severity of colitis. Another example is the Bacteroides, whose abundance is sig-

nificantly different between samples and correlates with the colitis severity better than Bacteroi-
detes. Bacteroides are found to be accumulated in inflamed ileum at high concentrations [38].

For all sixteen species in Bacteroidetes with their abundance significantly different between PtC

samples and CF samples as well as correlating better with the severity of colitis than Bacteroi-
detes, three species are from the genus Bacteroides. They are Bacteroides caccae (p-value 0.006,

correlation -0.468), Bacteroides salanitronis (p-value 0.025, correlation -0.383) and Bacteroides
cellulosilyticus (p-value 0.036, correlation -0.359). As to the phylum Actinobacteria, the analyses

of the microbiota in mucosa of patients with ulcerative colitis (UC) show that there are more

Actinobacteria and Proteobacteria in patients compared with controls [47]. Especially, micro-

biota of patients with UC have high level of abundance of the genus Rhodococcus and a low

abundance of both Bacteroides and Prevotella genera compared with the controls. We found

that the abundance of the species Rhodococcus erythropolis under the Rhodococcus genus is sig-

nificantly different between samples (p-value 0.036, correlation 0.421). Another study also indi-

cates that species in Rhodococcus causes infection in patients [51]. Rooks et al. found that gut

microbiomes of colitis patients were most significantly enriched in Actinobacteria, including

Corynebacterium, compared with the controls [50]. Four species we identified in this study are

from Corynebacterium and have an average correlation of 0.481 with the severity of colitis.

Besides the significant taxa related to colitis from the three most confident phyla, there are

other taxa supported by literature (S1 and S2 Tables). These are in total 101 taxa under the

phylum Firmicutes [40, 45, 47, 48, 50–53], 3 under the phylum Proteobacteria and 1 under the

phylum Fusobacteria [40]. Among them, the majority of taxa are actually lower level of the

Bacillales order, which includes 80 of the lower taxa we identified (the order Bacillales itself, 4

families, 16 genera and 59 species). Rooks et al. demonstrate that Bacillales plays an important

role in colitis in gut [50]. They also found the genus Staphylococcus are more enriched in colitis

patients [50]. In our study, we found that the abundance of ten taxa (Staphylococcus itself and

nine species) from Staphylococcus are significantly different between samples and correlates

well with the colitis severity.

Old metagenomic data and new sequenced genomes
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Re-analyses with MetaPhlAn support that Actinobacteria is different

between CF samples and PtC samples

The original study generated and analyzed the same shotgun metagenomic dataset with

MetaPhlAn [34]. From the original study, they concluded that the read abundances of Bacter-
oidetes and its three families Bacteroidaceae, Rikenellaceae and Barnesiellaceae are significantly

different between samples, and correlate well with the severity of colitis. Since we cannot find

the list of all taxa this study identified, especially their analyses results from the shotgun meta-

genomic reads, which was only partially shown in their S2 Fig [34], we followed their proce-

dure and applied the 1.7.7 version and the 2.1.0 verion of MetaPhlAn to the same shotgun

metagenomic data (Fig 1). The only difference we made is that we further trimmed reads with

Cutadapt to cut common adapters and primers after following their read trim procedure [54].

This is because after their suggested read trim procedure from the original study, there are still

certain samples with an extremely large ratio of the observed occurrence to the expected occur-

rence of several k-mers at the beginning or end of reads. The results from two different read

trim procedures are actually quite similar, because the number of the affected reads is relative

small compared with the number of total reads within samples.

Although we redid the analyses with almost the same procedures by the same tool, our

result from both versions of MetaPhlAn is quite different from what was reported in the origi-

nal study (Table 2). With the old version, MetaPhlAn identified one phylum (Actinobacteria),

one class (Actinobacteria), and three species (Alistipes shahii, Clostridium asparagiforme, Bac-
teroides caccae) with read abundances significantly different between samples (p-value<0.05).

The Bacteroidetes phylum itself is not significantly different between samples, although two of

the three identified species are from this phylum. The only significant phylum identified is

Actinobacteria, together with one of its classes. With the latest version, MetaPhlAn identified

one phylum (Actinobacteria), one class (Actinobacteria), one family (Rikenellaceae), one genus

(Alistipes), and six species (Alistipes shahii, Alistipes finegoldii, Alistipes onderdonkii, Bacteroides
caccae, Eubacterium siraeum, Eubacterium sp. 3_1_31) with read abundances significantly dif-

ferent between samples (p-value<0.05) (Table 2). Similarly, the Bacteroidetes phylum itself is

not significantly different between samples, although four of the six identified species together

with one identified genus and one identified family are from this phylum. The only significant

phylum identified is Actinobacteria, together with one of its classes. One species identified by

the old version is not discovered by the latest version, indicating that multi-reads may affect

Table 2. Comparison of results from our analyses and from two MetaPhlAn based analyses.

taxa reported by the original

study

taxa from MetaPhlAn version 2.7.0 taxa from MetaPhlAn

version 1.7.7

taxa from our pipeline that are reported by

the original study or identified by MetaPhlAn

Phylum 1(Bacteroidetes) 1(Actinobacteria) 1(Actinobacteria) 2(Bacteroidetes, Actinobacteria)

Class 0 1(Actinobacteria) 1(Actinobacteria) 0

Order 0 0 0 0

Family 3(Bacteroidaceae,
Rikenellaceae,
Barnesiellaceae)

1(Rikenellaceae) 0 2(Rikenellaceae, Barnesiellaceae)

Genus 0 1(Alistipes) 0 1(Alistipes)
Species 0 6(Alistipes shahi, Bacteroides caccae,

Alistipes finegoldii, Alistipes onderdonkii,
Eubacterium siraeum, Eubacterium sp.

3_1_31)

3(Alistipes shahii,
Clostridium asparagiforme,

Bacteroides cacca)

2(Bacteroides caccae,
Alistipes finegoldii)

The numbers in the table are the number of significant taxa identified by different pipelines. The names of these taxa are provided in the parentheses.

https://doi.org/10.1371/journal.pone.0198773.t002
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the downstream analyses and unique reads with current annotation may become multi-reads

in the future. We also tried the old version without changing the read trimming procedure in

the original research, we still only identified Actinobacteria as the only significant phylum

between samples (S3 Table). We also studied the correlation of the read abundances of these

identified taxa with the colitis severity in patients. All identified taxa have better correlation

than Bacteroidetes or almost all of their mapped reads are from one type of samples and thus

cannot calculate the correlation (Table 2).

We compared the results from our analyses in the previous sections with those from

MetaPhlAn. Many more taxa are identified by mapping reads to available sequenced genomes

than by MetaPhlAn (Tables 1 and 2). The reason may be because MetaPhlAn mapped reads to

marker genes, which cannot work well when the number of reads from a taxon is limited.

Therefore, the two analyses from MetaPhlAn can only identify certain taxa from the two most

abundant phyla. In addition, many taxa identified by MetaPhylAn and by the original study

are also discovered in our study, supporting the colitis-relatedness of these taxa. A few taxa dis-

covered by MetaPhlAn and by the original study are not found in our study, suggesting that

these taxa may be unreliable.

Discussion

By mapping metagenomic reads to all available microbial genomes, we identified at least 3

phyla, 2 classes, 9 orders, 22 families, 70 genera and 162 species that are potentially colitis-

related (last column of Tables 1 and S1 and S2). This is because the abundance of each of these

identified taxa is significantly different between CF and PtC samples, and correlates with the

colitis severity in patients better than the abundance of Bacteroidetes. Moreover, these taxa are

identified by both unique reads and all mapped reads. In addition, 2 phyla, 1 order, 4 families,

18 genera and 71 species are colitis-related based on literature search (S1 and S2 Tables). Com-

pared with the previously identified colitis-related taxa from the same data, we identified

much more taxa supported by literature.

We require that the read abundances of potential colitis-related taxa is significantly differ-

ent between CF and PtC samples, and correlates well with the colitis severity, for both unique

reads only and for all mapped reads together. We have lower confidence on the colitis-related-

ness of certain taxa such as the Chlamydiae phylum, although its abundance of all mapped

reads instead of only unique reads is significantly different between samples, and correlates

well with the colitis severity. This is because of our assumption that reads are randomly chosen

to be sequenced from a genome and there should be more unique regions for a given microbial

genome than shared regions with other genomes. Under this assumption, a significant taxon

should have unique read abundances significantly different between CF and PtC samples.

We show that multi-reads affect the analysis results. The inferred taxa based on unique

reads only are not always consistent with and sometimes quite different from the inferred ones

based on all mapped reads. This implies the necessity to develop better methods to accurately

assigned multi-reads to the “bona fide” genomes, which cannot be done satisfactorily at pres-

ent. Moreover, this also calls for cautious consideration when we remove duplicated reads

before mapping. Different from read mapping in individual species, where duplicated reads

only affect a small portion of repetitive regions, duplicated reads in metagenomics likely affect

the analysis of the present species and their abundance, as duplicated reads can be mapped to

multiple species as well.

Although we do not have high confidence on the colitis-relatedness of certain taxa because

they are insignificant based on unique reads, they can be still biologically significant and

related to colitis development. For instance, the Chlamydiae phylum is not considered colitis-
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related in our study. However, its lower taxa at the level of order, family, genus, and species are

all significant based on unique reads. The abundance of these significant lower taxa has an

average correlation with the severity of colitis around 0.41. One of its lower taxa at the species

level, Chlamydia felis, has a correlation of 0.415. Although zoonotic infection of humans with

Chlamydia felis is not reported, Chlamydia felis is a bacteria found in cats and is primarily for

the inflammation of feline conjunctiva, rhinitis and respiratory problems [55, 56].

We compared our results based on sequenced genomes with those from MetaPhlAn. We

identified many more colitis-related taxa based on sequenced genomes (Table 1). The majority

of these missed taxa by MetaPhlAn analyses are low abundant. They are missed by MetaPhlAn,

likely because there are many fewer reads that can be mapped to marker genes by MetaPhlAn

and thus these low-abundant taxa are not different between CF samples and PtC samples. In

addition, since the original study was submitted in November 2015, there are 74 (39.15%) and

159 (38.50%) species sequenced in Bacteroidetes and Actinobacteria, respectively. We found

that the read abundances of 5 of the 74 species and that of 4 of the 159 species are significantly

different between CF samples and PtC samples (S1 and S2 Tables), which cannot be identified

by MetaPhlAn, as the latest version of MetaPhlAn does not include these species. With more

sequenced genomes in the future, with our pipeline or with MetaPhlAn, we may identify even

more colitis-related species, as there are on average only about 38.65% reads that can be

mapped to the sequenced genomes currently (S4 Table). It is worth pointing out that, unex-

pectedly, different from what the original study reported, the application of two versions of

MetaPhlAn shows that Actinobacteria instead of Bacteroidetes has significantly different abun-

dance between samples (Table 2), suggesting that 16S rRNA read analyses resulted in a differ-

ent set of taxa from the analyses based on MetaPhlAn. Such an unexpected difference also

implies the limitation of 16S rRNA profiling based approaches.

Conclusion

Our study shed new light on metagenomic studies. It shows the necessity to consider every

region in sequenced genomes instead of considering marker genes only. It also suggests cau-

tion when working with duplicated reads and multi-reads during the analyses. Moreover, it is

mandatory to take into account how newly sequenced genomes affect the results if methods

based on sequenced genomes are used. We hope that in the near future, new and better tools

to consider multi-read mapping and novel methods without relying on sequenced genomes

can be developed so that the issues here can all be addressed or at least minimized.

Methods

Data and their processing

Pair-end raw read datasets from ten PtC samples and twelve CF samples were downloaded

under the BioProject ID: PRJNA302832. There were 78 files in this dataset, in which only 44

files correspond to shotgun metagenomic reads of the 22 patients. We thus only analyzed shot-

gun metagenomic reads from these 44 files. The program fastq-dump was used to convert raw

read datasets into fastq format. Cutadapt was used to cut common adapters and primers with

the command: cutadapt—minimum-length 36 -q 3, 3 -a file: common_adapter. After remov-

ing adapters and primers, there were still based pairs at the start and the end of reads with low

quality or excessively k-mer content based on fastQC. These base pairs were cut by cutadapt

with the command: cutadapt—minimum-length 36 -q 3, 3—cut 10—cut -10 -U 10 -U -10.

Finally, seqtk was used to convert fastq to fasta (Fig 1).
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Database preparation and Centrifuge

We mapped the processed reads to sequenced microbial genomes with the Centrifuge tool

[20]. Firstly, all possible complete genomes of archaea, bacteria and viruses were downloaded

from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/), which include 245, 7410 and 7281 complete

genome sequences for archaea, bacteria and viruses, respectively. With the corresponding

assembly summary file, we found the taxonomy ID of each complete genome sequence. With

the detail taxonomy ID file at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/, we calculated the full

lineage information for each complete genome sequence. These sequenced genomes were

from 38 phyla, 71 classes, 162 orders, 451 families, 1638 genera, and 9980 species. Secondly,

dustmasker was used to mark the low quality reads with command: dustmasker -infmt fasta

-in inName -level 20 -outfmt fasta | sed '/^>/! s/[^AGCT]/N/g'> resName. Thirdly, centri-

fuge-build was used to build the index for Centrifuge with the command: centrifuge-build -p 8

—conversion-table seqid2taxid.map—taxonomy-tree nodes.dmp—name-table names.dmp

input-sequences.fna abv. Finally, Centrifuge was used to annotate raw reads with the com-

mand: centrifuge -f -p 8 -t -x index_name -1 forward.fasta -2 reverse.fasta -S result—report-

file result_report. Centrifuge gives score(s) to each mapped read. Reads with more than one

score are multi-reads that can be mapped to several genomes (Fig 1).

For a sequenced genome, we counted the mapped reads in each sample and normalized

this number by dividing the count by the total number of reads in the corresponding sample.

We then compared the twelve normalized numbers from the CF samples with the ten normal-

ized numbers from the PtC samples for this sequenced genome. For a taxon at the level higher

than the species level, reads from all species contained in this taxon were counted, normalized,

and compared.

MetaPhlAn

We inferred the present species and the read abundances by MetaPhlAn with its default

parameter [17]. Since it was not clear which version of MetaPhlAn was used in the original

study [34], we applied the two latest versions (version 1.7.7 and version 2.1.0) of MetaPhlAn to

the shotgun metagenomic dataset. The input for MetaPhlAn was the same as Centrifuge,

which were raw reads in fasta format (Fig 1). The output from MetaPhlAn was the read abun-

dances for each taxon at each taxonomical level. The sum of the abundance of all taxa under

the same level was 100%. Then we fetched the abundances for each taxon in each sample for

further analyses.

Statistical analysis

Mann-Whitney p-values was calculated with R package, in which the two-sided exact p-value

with correction was calculated. The correlation of the read abundances with the severity of

colitis was calculate by the Spearman-Rank correlation with python2.7 in the scipy.stats pack-

age. The severity of colitis scores were obtained from the original study [34].

Supporting information

S1 Table. Taxa identified with unique reads only.

(XLSX)

S2 Table. Taxa identified with all mapped reads.

(XLSX)
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